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Recapping: a method to visualize what an electric 
field looks like is wrapped up in what are called electric field 
lines.  You saw an example of field lines when I introduced the 
idea of an electrical disturbance around a charge (see figure to 
the right).  The lines are designed to tell you very specific 
information about the charge configuration:

Electric Fields Lines
Q

As electric field lines move away from positive charge and toward negative 
charge (remember, the direction of an electric field is defined as the direction a 
positive test charge would accelerate if released at the point of interest), electric 
field lines always leave positive charges and enter negative charges. 

The number of line that leave a charge is proportional to the size of the charge.

The distance between lines gives you a relative feel for the strength of the field 
at a particular point—the closer the lines, the stronger the force.  That means a 
constant E-fld will have field lines that are parallel and equidistant apart.

The lines gives you a relative feel for the direction of the 
field at a given point, and skirt areas where an E.fld is zero.

electric field lines for 
positive point charge

constant E-fld
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Conductors in electrostatic equilibrium
Consider a neutral, metal conductor.

– What is true about some of the electrons in that conductor?

If no net motion of charge occurs in that conductor, it’s in electrostatic equilibrium. 
(This occurs when a conductor is isolated and insulated from the ground). This means:

– The electric field is zero everywhere inside the conductor.
If not, what would happen?

– Any excess charge on that conductor is entirely on its surface.
If not, what would happen?

– The E field just outside a charged conductor is perpendicular to its surface.
If not, what would happen?

– If irregular, charge accumulates at sharp points (where the radius of curvature 
is smallest).

Let’s look at this…

They’re free to move within the material - remember metallic bonding?

The field would cause charge to move - not equilibrium!

They’d repel and move towards the surface anyways!

There would be a surface-parallel component, which 
would make charges flow…not equilibrium!
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When free charge is placed on a conductor, electrical repulsion will motivate 
electrons to move as far away from other electrons as possible.  Consequence: 

Shielding

Force electrons onto a flat conducting surface.  At some point, 
the free electron population already on the surface will provide
such a large repulsive force that no additionally placed 
electrons will make it onto the surface.  When that happens, the 
electrons will be evenly distributed over the surface.

surface charge density 
evenly distributed

Bend the surface and you can force MORE electrons on, increas-
ing the surface charge density.  Why?  Because there is now 
material between the electrons, diminishing their repulsive effect 
on distance electrons.  This phenomenon is called SHIELDING. surface charge 

density increased

The extreme: the lightning rod, a pointed piece of metal insulated 
from a house.  It accumulates HUGES amount of charge at its end
point, attracting potential lightning strikes away from the house.

Oddly shaped conductors will have different charge densities, 
depending upon the severity of their curvature. charge density 

really high

charge density  
relatively low



Irregularly-shaped conductors

https://courses.lumenlearning.com/suny-physics/chapter/18-7-conductors-and-electric-fields-in-static-equilibrium/

Consider the object below. Charges on the flatter (left) end exert repelling forces, 
which are close to parallel to the surface, so the charges move out until repelling 
forces from other charges bring them to equilibrium.
Charges on the pointier (right) end exert similar repelling forces, but a much 
smaller component is parallel to the surface, so the charges don’t move much 
before being brought to equilibrium.
The result? Charges gather more densely on pointier ends, to keep the electric 
field oriented perpendicular to the surface.

This is the 
principle behind 
lightning rods!
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Flux
What does “flux” mean? Can you give examples?

Electric flux is only one type of flux
– There is also magnetic flux, which we’ll get to later

To understand flux, we need to look at what kind of boundary/surface we’re 
talking about, and what the thing is that’s passing through it!

Most generally, “flux” means something passing through a boundary, like an 
“influx” of people at a border, or water flowing (actually where the word 
comes from) through a cross-section of a pipe.
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Electric Flux
Imagine that there are lots of electric field lines emanating from the board/this 
screen and pointing out towards you. 

Then imagine that you have a piece of paper that you hold up in front of you.
– If you orient the paper parallel to your screen, so that its flat face is 

facing the screen, what do the electric field lines do?

– If you orient the paper perpendicular to your screen, so that the flat 
face is at a right angle and only the skinny width of the paper faces the 
screen, what do the field lines do?

The field lines pass through the paper, in one side and out the other.

Pretty much none of the field lines pass through the paper, because 
they’re parallel to it.
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Electric flux
We can describe the piece of paper (oriented parallel to the screen again) with an 
area vector

– An area vector points perpendicular to the surface whose area you’re 
representing (a normal vector!)

So let’s say the area vector for the piece of paper is pointing away from the screen 
(in the same direction as the electric field).

Electric flux (Φ!) is produced by the electric field component that is parallel to 
the area (normal) vector for a surface.

– Electric flux is a way to measure how much of the electric field (e.g. the 
number of field lines) is passing through a surface of area A.

Mathematically: Φ" = E $ A = EAcosθ

The angle between E and A
Units: N " m!/C
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A helpful analogy
Imagine you are outside on the senior patio on a beautiful sunny day. You step out 
from under the trees into the sunlight. What happens?

– The sun’s rays hit you and warm you up!
What could be done to increase the amount of heat you absorb?

– Expose more surface area to the sun (this is like increasing the area through which the electric 
field lines pass)

– Increase the intensity of the sun (this is like changing the magnitude of the electric field)
– Turn so the sun’s rays hit you straight on (perpendicular!)

https://www.colorado.edu/physics/phys1120/phys1120_fa06/notes/notes/Ch24lect.pdf
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That “cos𝛉” thing…

http://slideplayer.com/slide/5014369/ 15.)  



Direction of flux
Imagine a cube as shown below, in a uniform electric field pointing to the 
right. Each face of the cube has an area, so we can look at the electric flux 
through each one. 

http://online.missouri.edu/exec/data/courses/2681/public/lesson01/image16.gif

q The top, bottom, far, and near faces 
are all oriented parallel to the electric 
field - so the electric flux through each of 
those faces is 0.
q The right face has a normal vector 
that points to the right (outward), which 
is parallel to the electric field. Thus, the 
angle between them is 0, and since 
cos(0) = 1, the flux through the face is 
EA
q The left face has a normal vector that 
points to the left (outward), which is 180 
from the electric field direction. 
Cos(180) = -1, so the flux through that 
face is -EA

Bottom line: for a closed surface, flux lines passing into the object are negative, and 
flux lines passing out of the object are positive.
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So let’s assume a point charge q. is surrounded 
by an imaginary surface.  What can we do with that 
situation?

Gauss made the simple but powerful observation that there 
would be an electric flux through the closed surface, called a Gaussian 
Surface, as long as there was charge enclosed inside the surface.

What’s more, he surmised that the amount of flux would have to be proportional to 
the amount of charge enclosed inside the Gaussian surface.  Noting that the amount 
of electric field moving through the differential area dA is the component of E along 
the line of dA (or the dot product of the two vectors), and noting that if we do this 
process for all the differential areas on the surface and sum (that is, integrate), we can 
write gauss’ Law as:

 
ΦE =

!
E i d
!
A∫  proportional to qenclosed

The proportionality constant that made the relationship into 
an equality was the inverse of our old friend, the permittivity of 
free space (i.e.,       ), so Gauss’s Law is written as:1

εo
 

!
E i d
!
A∫ = qenclosed
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!
A

 
!
Eq

Gaussian surface
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The big point for the Honors class is that for an 
electric field to exist at a point on a close surface, 
there MUST be charge enclosed inside the surface.  

How is this useful? You won’t be tested on this, but 
let’s say you have a point charge sitting in space.  
You put a spherical Gaussian surface around the 
charge with the charge at the center.  The magnitude 
of the electric field will be the same at every point on 
the surface, so it can be pulled out of the integral.  
The angle between the dA (always defined as 
outward from the surface) and E evaluated on the 
surface will always be zero, so the cosine of the 
angle between the two vectors in the dot product will 
be one).  With the integral of dA simply being the 
sum of all the dA’s, or the surface area of the sphere, 
the math becomes:

!
E i d
!
A∫ = qenclosed
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    E dA
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A

 
!
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Gaussian surface

You’ve just DERIVED the electric field function for a point charge!!!
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