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FElectric Fields Lines

Recapping: a method to visualize what an electric ‘\\\T ///ﬂ
. . . S _%
field looks like 1s wrapped up in what are called electric field 7/?\\\

lines. You saw an example of field lines when I introduced the

idea of an electrical disturbance around a charge (see figure to

the right). The lines are designed to tell you very specific electric field lines for
information about the charge configuration: positive point charge

As electric fie[c[ [ines move away from positive charge and toward negative
charge (remember, the direction of an electric field is defined as the direction a
positive test charge would accelerate if released at the point of interest), electric
field lines always leave positive charges and enfer negative charges.

The number of [ine that leave a charge is proportional to the size of the charge.

The distance between [ines gives you a relative feel for the strength of the field
at a particular point—the closer the lines, the stronger the force. That means a

constant E£-fld will have field lines that are parallel and equidistant apart.
The [ines gives you a relative feel for the direction of the %
field at a given point, and skirt areas where an E.fld is zero.
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Conductors in electrostatic equifiﬁrium

Consider a neutral, metal conductor.

— What is true about some of the electrons in that conductor?

They’re free to move within the material - remember metallic bonding?

Qf no net motion of charge occurs in that conductor, it’s in electrostatic equilibrium.
(This occurs when a conductor 1s isolated and insulated from the ground). This means:
— The electric ﬁ’e[c[ is zero everywﬁere inside the conductor.
If not, what would happen? The field would cause charge to move - not equilibrium!
— Any excess cﬁarge on that conductor is entirely on its surface.
If not, what would happen? They’d repel and move towards the surface anyways!

— The E fie[d’ fust outside a charged conductor is perpendicular to its surface.

If not, what would happen? There would be a surface-parallel component, which
would make charges flow...not equilibrium!

— Qf iwegu[ar, charge accumulates at sharp points (where the radius of curvature
1s smallest).
Let’s look at this...
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S ﬁie[cfing

When f ree char ge is placed on a conductor, electrical repulsion will motivate
electrons to move as far away from other electrons as possible. Consequence:

Force electrons onto a flat conducting surface. At some point,
the free electron population already on the surface will provide
such a large repulsive force that no additionally placed
electrons will make it onto the surface. When that happens, the  surface charge density
electrons will be evenly distributed over the surface. evenly distributed

Bend the surface and you can force MORE electrons on, increas-
ing the surface charge density. Why? Because there is now
material between the electrons, diminishing their repulsive effect
on distance electrons. This phenomenon is called SHIELDING.

surface charge
density increased

Oc[cffy sﬁajoecf conductors will have different charge densities,

depending upon the severity of their curvature. charge density

really high ~

The extreme: the lightning rod, a pointed piece of metal insulated ‘
from a house. It accumulates HUGES amount of charge at its end
point, attracting potential lightning strikes away from the house.

~—
——

relatively low
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Consider the oﬁject below. Charges on the flatter (left) end exert repelling forces,
which are close to parallel to the surface, so the charges move out until repelling
forces from other charges bring them to equilibrium.

C ﬁarges on the ‘pointier (right) end exert similar repelling forces, but a much
smaller component is parallel to the surface, so the charges don’t move much
before being brought to equilibrium.

The result? Charges gather more densely on pointier ends, to keep the electric
field oriented perpendicular to the surface.

N This is the

principle behind
lightning rods!
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Flux

What does ‘iffux” mean? Can you give examples?

Most generally, “flux” means something passing through a boundary, like an
“influx” of people at a border, or water flowing (actually where the word
comes from) through a cross-section of a pipe.

FElectric f[ux is only one type of flux

— There is also magnetic flux, which we’ll get to later

To understand f[ux, we need to look at what kind of boundary/surface we’re
talking about, and what the thing is that’s passing through it!
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FElectric Flux

Imagine that there are lots of electric field lines emanating from the board/this
screen and pointing out towards you.

Then imagine that you have a piece of paper that you hold up in front of you.

— ‘Jf you orient the paper parallel to your screen, so that its flat face 1s
facing the screen, what do the electric field lines do?

The field lines pass through the paper, in one side and out the other.

— ‘Jf you orient the paper perpendicular to your screen, so that the flat
face is at a right angle and only the skinny width of the paper faces the
screen, what do the field lines do?

Pretty much none of the field lines pass through the paper, because
they’re parallel to it.
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Flectric f[ux

We can describe the piece of paper (oriented parallel to the screen again) with an
area vector
— ‘An area vector points perpendicular to the surface whose area you’re
representing (a normal vector!)

So let’s say the area vector for the piece of paper is pointing away from the screen
(in the same direction as the electric field).

Electric f(ux (@) is produced by the electric field component that is parallel to
the area (normal) vector for a surface.

— Electric ffux 1s a way to measure how much of the electric field (e.g. the
number of field lines) is passing through a surface of area 4.

Mathematically: ®; = E- A = EAcosf
/ N The angle between E and A

Units: N - m?/C
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‘A ﬁegofu[ oma[ogy

Tmagine you are outside on the senior patio on a beautiful sunny day. You step out
from under the trees into the sunlight. What happens?

— The sun’s rays hit you and warm you up!
What could be done to increase the amount of heat you absorb?

— Expose more surface area to the sun (this is like increasing the area through which the electric
field lines pass)

— Increase the intensity of the sun (¢his is like changing the magnitude of the electric field)

— Turn so the sun’s rays hit you straight on (perpendicular!)

Flux is a useful concept, used for other quantities besides E, too. E.g. if you have solar
panels, you want the flux of sunlight through the panel to be large. House #2 has poorly

,Z“@t designed panels. Although the AREA of the
SR panels is the exact same, and the sunshine
............. o (Less flux) brightness is the exact same, panel 2 is less

Y useful: fewer light rays "pierce" the panel, there
(Lots of flux) %j ?-R is less FLUX through that panel.
/_J 1 2 | Solar panel 2.
same area,
Solar panel I;\Ousf: diffferent tilt.
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That “cos0” thing...

(a) The electric flux through
. the surface = EA.

. | et (b) When the area vector
makes an angle ¢ with the
m— vector E, the area projected
A onto a plane oriented
y perpendicular to the flow is
@) A perp. = A cos ¢. The flux
is zero when ¢ = 90° because
the rectangle lies in a plane
parallel to the flow and no

y
-
sl fluid flows through the
E A\ rectangle

A flat surface in a uniform
(b) electric field.

Copyright © Addison Wesley Longman, Inc
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Direction @C ffux

Tmagine a cube as shown below, in a uniform electric field pointing to the

right. Each face of the cube has an area, so we can look at the electric flux

through each one.

Q The top, bottom, far, and near faces
are all ofiented parallel to the electric
field - so the electric flux through each of
those faces 1s 0.

left top side rig ht O The right face has a normal vector
-~ « y . that points to the right (outward), which
side - . -7 side 18 p?raglel to thehelectrlg ﬁel((il. T'hus, the
: [ angle between them 1s 0, and since
—> AN — cog(O) = 1, the flux through the face is
— - — EA
e — O Thele L alcefﬁas a norér)lal \Illec}tlor that
» » oints to the left (outward), which is 180
rom the electric field direction.
Cos(180) = -1, so the flux through that

face is ~EA

Bottom l[ine: for a closed surface, flux lines passing into the object are negative, and
flux lines passing out of the object are positive.

http://online.missouri.edu/exec/data/courses/2681/public/lesson01/image16.gif 1 6)



Gaussian surface

So [61"5 ASSUME a point charge g. is surrounded

by an imaginary surface. What can we do with that
situation?

E
q
(j auss TVLCLC[@ tﬁe simple but powerful observation that there

would be an electric flux through the closed surface, called a Gaussian
Surface, as long as there was charge enclosed inside the surface.

What's more, he surmised that the amount of flux would have to be proportional to
the amount of charge enclosed inside the Gaussian surface. Noting that the amount
of electric field moving through the differential area dA is the component of E along
the line of dA (or the dot product of the two vectors), and noting that if we do this
process for all the differential areas on the surface and sum (that is, integrate), we can

write gauss’ Law as: L
d, = J. E «dA proportional to q__,. .4

The Joroyo*rtionafity constant that made the relationship into
an equality was the inverse of our old friend, the permittivity of

free space (i.e.,%o), so Gauss’s Law 1s written as: J‘E o dA = Jenclosed
€, 17)




The Eig ‘point for the Honors class 1s that for an
electric field to exist at a point on a close surface,
there MUST be charge enclosed inside the surface.

How is this usefuf? You won’t be tested on this, but
let’s say you have a point charge sitting in space.
You put a spherical Gaussian surface around the
charge with the charge at the center. The magnitude
of the electric field will be the same at every point on
the surface, so it can be pulled out of the integral.

The angle between the dA (always defined as
outward from the surface) and E evaluated on the
surface will always be zero, so the cosine of the
angle between the two vectors in the dot product will
be one). With the integral of dA simply being the
sum of all the dA’s, or the surface area of the sphere,
the math becomes:

You've just DERIVED the electric field function for a point charge!!!

Gaussian surface

J‘ EodA = denclosed
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